
CONSERVATION LAWS FOR EULER-LAGRANGE EXTERIOR
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Abstract. The calculus of variations is a powerful tool PDE, allowing detailed analysis
when applicable. In this series of 2 talks I will explain how to describe them in a
coordinate free manner using exterior differential systems. Using this we will be describe
a particularly nice formulation of Noether’s theorem describing the space of conservation
laws. From this we will be able to derive some nice constraints on minimal surfaces.

Note: A very large portion of this talk is lifted from the first chapter of Exterior Dif-
ferential Systems and Euler-Lagrange Partial Differential Equations by Bryant, Griffiths
and Grossman.

1. The Classical variation problem

The first goal of these notes is to explain how the classical variational problems arising
in PDE and physics can be rewritten as an exterior differential system. Once this is done
we will be in a position to describe Noether’s theorem relating symmetries of the problem
to conservation laws. We quickly review what is meant by variational problem.

Given a smooth function L(x, z, p) in the variables x, p ∈ Rn and z ∈ R we can define
a functional on the space of functions C∞(U,R) for some open, bounded set U ⊂ Rn by

F(z) =

∫
U

L(x, z,∇z)dx.

Given such a functional, a critical point is one so that d
dt
F(z + tε) = 0 for any ε : U → R

where ε|∂U = 0. The critical points are exactly the functions which satisfy the Euler-
Lagrange equation

∂L

∂z
−
∑ ∂

∂xi

(
∂L

∂pi

)
= 0.

For example, if we consider the class of hypersurfaces in Rn+1 we can define the area
functional which maps a surface to its area. More concretely, we may locally consider
graphs of z : U → R whose restrictions to the boundary agree with a given z0 : ∂U → R.
Setting dx = dx1 ∧ . . . ∧ dxn, the area of such a graph is then given by the functional

A(z) =

∫
U

√
1 + ‖∇z‖2dx.

A function f(x) which respects the boundary condition and whose graph locally minimizes
this functional satisfies the Euler-Lagrange equation∑ ∂

∂xi

(
fxi√

1 +
∑
f 2
xi

)
= 0

It will be profitable to cast this setup in the language of Exterior Differential Systems
for several reasons, the most basic one being that we are freed from the need to choose
coordinates. For example, in the minimal surface case we are free to consider surfaces
which are not globally represented by a graph as above.
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2. The Euler-Lagrange System

In the above setup the function L is a function of x and z as well as the first derivatives
of z. For this reason, the natural space for our calculations to live on will be M =
J1(Rn,R), the set of 1-jets of functions on Rn. This space has natural coordinates which
we call xi, z and pi for 1 ≤ i ≤ n and a natural contact form

θ = dz − pidxi.
The 1-jet graph of a function f : Rn → R is the submanifold

N = {(x, f(x),∇f(x)) ∈ J1(Rn,R)},
It is a standard exercise to see that any such 1-jet graph is an integral manifold of the
differential ideal I = {θ, dθ}. Conversely, an n-dimensional integral manifold N for which
the restriction of dx1∧ . . .∧dxn is never zero will be the 1-jet graph of a function. Indeed,
the condition dx1 ∧ . . . ∧ dxn means that we can locally describe N as

N = {(xi, f(x), pi(x))}
for some functions f and pi of x. Then

0 = θ|N = (dz − pidxi)|N = df − pi(x)dxi =

(
∂f

∂xi
− pi(x)

)
dxi

so that N is the 1-jet graph of f . An integral n-manifold for I is also known as Legendre
for the contact system. Intuitively, the condition that θ|N = 0 forces the pi to be the
derivatives of z.

With this setup, we define a Lagrangian on M to be any n-form Λ ∈ Ωn(M). To this
we associate a functional on integral manifolds of I by

FΛ(N) =

∫
N

Λ.

For example, if Λ = L(x, z, p)dx we recover the classical case described in the first section.
Note that while FΛ could be considered a functional on all n-manifolds in M , we restrict
to integral manifolds. One consequence of this restriction is that the functional FΛ only
depends on Λ up to congruence modulo {θ}. Indeed, for Λ̃ = Λ + θ ∧ β we have for any
integral manifold N

FΛ̃(N) =

∫
N

Λ +

∫
N

θ ∧ β = FΛ(N).

The more important object to study turns out to be the derivative Π = dΛ of Λ, which
we now normalize for later use. By symplectic linear algebra1 we can write always find
forms α and β so that

dΛ = θ ∧ α + dθ ∧ β
= θ ∧ (α + dβ) + d(θ ∧ β)

Thus if we replace Λ with Λ − θ ∧ β we may assume, without affecting our functional,
that dΛ = θ ∧Ψ for the n-form Ψ = α + dβ.

To determine the critical values of our functional, suppose we have an n-dimensional
manifold N with boundary and a Legendre immersion ι : N ↪→ M . A variation of ι is a
map

F : N × (−ε, ε)→M

1dΛ is an n + 1 form, so its image in T ∗
xM/{θ} cannot be primitive with respect to the symplectic

form dθ.
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so that F |N×{0} = ι, F (N ×{t}) is a Legendre submanifold for all t ∈ (−ε, ε) and so that
F (q, t) is independent of t for any q ∈ ∂N . We will denote by Nt the image F (N × {t})
and let Ft(x) = F (x, t).

If the Legendre manifold N0 minimizes the functional FΛ then for any variation Nt we
will have d

dt
FΛ(Nt) = 0. Expanding the left hand side we have

d

dt
FΛ(Nt) =

d

dt

∫
N

F ∗t Λ

=

∫
N

L ∂
∂t
F ∗t Λ

=

∫
N

∂
∂t
yF ∗t dΛ +

∫
N

d
(
∂
∂t
yF ∗t Λ

)
=

∫
N

∂
∂t
yF ∗t dΛ +

∫
∂N

∂
∂t
yF ∗t Λ

=

∫
N

∂
∂t
yF ∗t dΛ

the last equality holding because F ′t(
∂
∂t

) = 0 on the boundary by assumption. Finally,
using our normalization assumption that dΛ = θ ∧ Ψ and the fact that F ∗t θ = 0 we see
that ∫

N

∂
∂t
yF ∗t dΛ =

∫
N

∂
∂t
yF ∗t (θ ∧Ψ)

=

∫
N

( ∂
∂t
yF ∗t θ)Ψ

We let g = ( ∂
∂t
yF ∗t θ)|t = 0 and conclude that

d

dt

∣∣∣∣
t=0

FΛ(Nt) =

∫
N

g · ι∗Ψ = 0

for a critical point of FΛ. Since this holds for any variation, and hence any g, we conclude
that a Legendre manifold N is a critical point exactly if ι∗Ψ = 0. In other words, critical
points of FΛ are exactly the integral manifolds of the ideal E = {θ, dθ,Ψ}.

To demonstrate all of this, let us calculate the Euler-Lagrange equations for a classical
Lagrangian Λ = L(x, z, p)dx1 ∧ . . . ∧ dxn. We compute

dΛ = (Lzdz + Lpidpi) ∧ dx1 ∧ . . . ∧ dxn

= θ ∧ Lzdx1 ∧ . . . ∧ dxn − dθ ∧ (−1)i−1Lpidx
1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

= θ ∧ α + dθ ∧ β.
Now we use the normalization as above to see that

Ψ = α + dβ

= Lzdx+ (−1)id(Lpidx
1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn)

Then an integral manifold of E will of the form N = {(x, z(x), zxi(x))} and

Ψ|N = Lzdx
1 ∧ . . . ∧ dxn + (−1)i(Lpixjdx

j + Lpizdz + Lpipjdp
j) ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

= (Lz − Lpixi − Lpizzxi − Lpipjzxixj)dx

=

(
∂L

∂z
(x, z(x), zxi(x))− ∂

∂xi

(
∂L

∂pi
(x, z(x), zxi(x))

))
dx.

3



The coefficient term of the last line is the standard Euler-Lagrange equation and we see
that it is zero if and only if N is a critical point for the functional FΛ.

3. The Space of Conservation Laws

Switching gears temporarily, we define a conservation law of an exterior differential
system (M, E) to be any form ϕ ∈ Ωn−1(M) so that dϕ ∈ E . Thus a conservation law
satisfies dϕ|N = 0 for any integral manifold of N . This is a concise way representing
‘conserved quantities,’ and their existence allows us to place strong conditions on the
possible integral manifolds.

For example, consider a 1-dimensional variational problem with Lagrangian L(x, z, p) =
1
2
mp2 − U(z). In physics this is the system of a single particle of mass m moving along

the real axis with a potential field U(z) which is a function of position. The 1
2
mp2 term

is the kinetic energy of the particle and the U(z) term is its potential energy. Later
we will see that the independence of the Lagrangian on x gives us the conservation law
E = 1

2
mp2 + U(z), which represents the total energy of the system. As a conservation

law, the function E on the ‘phase space’ M = J1(R,R) ∼= R3 has the property that
dE|N = 0 for any solution. In particular, we see that E is constant along any solution.
Note that dE 6= 0 as a 1-form on M , so the level sets E = const are hypersurfaces. Any
solution must lie within one of these level sets and we have reduced the phase space by
1-dimension.

We now define the space of conservation laws. A conservation law will not tell us
anything if ϕ is already in E or if it is exact, so we will want to quotient those out.
In other words, a conservation law is an n − 1-form ϕ so that dϕ ∈ E , modulo exact
n− 1-forms and those already in E . Because of this, we define the space of conservation
laws to be C = Hn−1(Ω̄∗) where Ω̄k = Ωk(M)/Ek and Ek = E ∩Ωk(M). One might object
that a conservation law [ϕ] for which dϕ = 0 is also trivial, and for this reason we will
also want to quotient these out. To do this, note that the short exact sequence of chain
complexes

0→ E∗ → Ω∗(M)→ Ω̄∗ → 0

gives us the long exact sequence

· · · → Hn−1
dR (M)

π→ C → Hn(E∗)→ . . .

We define the space of proper conservation laws to be C = C/π(Hn−1
dR (M)). The long

exact sequence also gives us an inclusion of C into Hn(E∗)
For a general EDS the calculation of the space of conservation laws is an interesting

problem. In the case that our exterior differential system is associated to a Lagrangian
on a contact manifold Noether’s theorem gives a nice characterization. To explain this
we first need to describe the space of symmetries of Λ. A vector field v ∈ X(M) is an
infinitesimal symmetry of the Lagrangian if it preserves both the contact form and Λ.
We define the space of such vector fields

gΛ = {v ∈ X(M) : Lvθ ≡ 0(mod θ),LvΛ = 0}.
Then we have the

Theorem (Noether). For a nondegenerate Euler-Lagrange functional Λ with associated
Euler-Lagrange system (M, EΛ) there is an injective linear map

η : gΛ → Hn(E∗Λ)

so that η(gΛ) ⊆ C.
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For a Lagrangian normalized as above so that dΛ = θ ∧Ψ we may explicitly define

η(v) = −vyΛ.

Then we easily compute

d(−vyΛ) = ����−LvΛ + vy(θ ∧Ψ)

= θ(v)Ψ− θ ∧ (vyΨ) ∈ EΛ

To continue the example of a particle in a conservative filed, notice that the Lagrangian
Λ = (1

2
mp2 − U(z))dx is invariant by the ‘time’ variable x, as is θ. To use Noether’s

formula we need to first ensure that Λ is normalized, so we calculate

dΛ = (mp dp− U ′(z)dz) ∧ dx
= −mp dθ − U ′ θ ∧ dx
= βdθ + θ ∧ α.

Thus we replace Λ with

Λ̃ = Λ− βθ = (1
2
mp2 − U(z))dx+mp(dz − p dx)

= (−1
2
mp2 − U(z))dx+mp dz.

Then indeed dΛ̃ = θ ∧ (m dp− U ′ dx) and Noether’s theorem gives us

E = −∂xyΛ̃ = 1
2
mp2 + U(z)

4. Minimal Hypersurfaces

To study minimal hypersurfaces in Euclidean space we will work on the contact man-
ifold over En+1, defined to be the unit sphere bundle of the tangent bundle, M =
S(TEn+1) ∼= En+1 × Sn with projection map x : M → En+1 . On M there is a natu-
ral (tautological) contact form defined by

θ(x,e0)(w) = dx(w) · e0

where w ∈ T(x,e0)M . Since En+1 is euclidean, we may identify each point (x, e0) ∈ M
with the hyperplane {e0}⊥ ⊂ TxM . In this way we may think of M as the bundle of
hyperplanes in En+1. A Legendre n-manifold for θ is the lift of a hypersurface to the
hyperplane bundle, like the 1-jet graph situation above.

Although M is our primary object of interest, computations will be much easier on the
larger bundle of frames, where we have complete structure equations. By definition, the
oriented orthonormal frame bundle F of En+1 is the set of oriented orthonormal bases
(e0, . . . , en) of TxEn+1 for each x ∈ En+1. This bundle has projection map x as well as
framing maps given by ei(f) = ẽi for the frame (x, ẽ0, . . . , ẽn). We can also consider F
as a bundle over M with projection map x× e0. On F we have the canonical 1-forms ωa

and ωab given by

ωi = dx · ei
ωij = dej · ei = −ωji

as well as the structure equations

dωi = −ωij ∧ ωj

dωij = −ωik ∧ ωkj .
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Notice that ω0 is the pullback of θ by the projection F → M . On F the structure
equation dω0 = −ω0

a ∧ ωa shows that ω0 ∧ (dω0)n 6= 0. Since the projection F →M is a
submersion the same must hold for θ, and the claim that it is a contact form is proven.

With this set up, we may define an n-form on F by

Λ̃ = ω1 ∧ . . . ∧ ωn.
Given a section σ : M → F we may define Λ = Λσ = σ∗Λ̃ and this is well defined
independent of our choice σ. Indeed, any other section η differs from σ by a multiplication
with a section of M × SO(n), so that η = m · σ. Then we will have the relation

σ∗ωi = (m−1)ijη
∗ωj

so that
Λσ = det(m−1)Λη.

The functional

FΛ(N) =

∫
N

Λ

on Legendre submanifolds of N is exactly the area functional for hypersurfaces in En+1.
Indeed, given a Legendre manifold N of (M, θ) and a section σ : M → F , the forms
σ∗ω1, . . . , σ∗ωn give an orthonormal framing when restricted to N . Their product is then
equal to the volume form on N as well as to Λ.

It is easy to check from the structure equations that2

dΛ = −θ ∧ ω0
i ∧ ω(i)

so that Λ is already normalized with Ψ = −ω0
i ∧ ω(i). From what was shown earlier,

minimal hypersurfaces in En+1 are in bijection with integral manifolds of the ideal

I = {θ, dθ, ω0
i ∧ ω(i)}

which satisfy the independence condition ω1∧. . .∧ωn|N 6= 0.3 If N is an integral manifold
then the form dθ = −ω0

i ∧ωi is zero on N and the Cartan lemma tells us that, restricted
to N ,

ω0
i = hijω

j, hij = hji.

The hij are the coefficients of the second fundamental form ofN . Plugging these equations
into Ψ we see that

0 = Ψ|N = (
∑
i

hii)ω
1 ∧ . . . ∧ ωn,

so the (local) area minimizing hypersurfaces are exactly those of mean curvature 0.
The group of Euclidean symmetries on En+1 (translations and rotations) induce a

‘diagonal’ action on F and the forms ωi are invariant under this action. Indeed, if we
fix a base point and framing for En+1 then we can identify F with the group ASO(3)
of Euclidean motions. Under this identification the forms ωi, ωij are the components of
the Maurer-Cartan form of ASO(3). By definition these forms are invariant under left
multiplication. Then the pulldowns θ and Λ are also invariant under the diagonal action
on M . From the action we get a map

aso(3) ↪→ gΛ ⊂ X(M).

2The notation ω(i) denotes the form (−1)i−1ω1 . . . ∧ ω̂i ∧ . . . ∧ ωn. The forms ω0
i and ωi are not well

defined on M , but their pullback under any section is, and the product ω0
i ∧ω(i) does not depend on the

choice of section. From here on I will identify the ω0
i , ω

i with their pullbacks by some section with no
further comment.

3It is sort of a coincidence that the independence condition is equal to Λ, which is to say that for any
other Lagrangian we would still use the independence condition ω1 ∧ . . . ∧ ωn

6



By Noether’s theorem we may identify elements of aso(3) with conservation laws of Λ.
For example, suppose v ∈ aso(3) is an infinitesimal translation. We can write this on

the frame bundle as
v|F = Ae0 + Aiei

where the A,Ai are the coefficients of v in the basis e0, . . . , en. Then Noether’s formula
gives us the conservation law

ϕ = vFyΛ = Aiω(i).

For an integral manifold N with ω1 ∧ . . .∧ωn 6= 0, the ωi give an orthonormal coframing
and we may write

ϕ|N = Ai(∗ωi) = ∗ 〈v, dx〉
where ∗ is the Hodge star operator for N . In fact, we may still use the Hodge star without
reference to a particular integral N because any point of M represents a hyperplane.
Purely algebraically, at the point q = (x, e0) ∈ M representing H = {e0}⊥ we define
ϕq = ∗(〈v, dx〉 |H)

As we vary the translation vector v we get a linear map ϕ ∈ (En+1)∗ ⊗ C. Identifying
En+1 with its dual we may think of ϕ as an En+1 valued conservation law, written ∗dx.

For an integral manifold N with smooth boundary this tells us that

0 =

∫
N

dϕ =

∫
∂N

∗dx.

To interpret this, let us adapt our framing so that

• e0 continues to be the oriented normal to N .
• en is the outward normal to ∂N within N .
• e1, . . . , en−1 is tangent to ∂N .

Written this way,

dx = e0ω
0 +

n−1∑
i=1

eiω
i + enω

n,

and restricted to N we have

∗dx =
n−1∑
i=1

eiω(i) + enω(n).

Finally, on ∂N the form ωn vanishes and we are left with

∗dx|∂N = ±enω1 ∧ ωn−1.

The vector en is outward normal and ω1 ∧ ωn−1 is the area form on ∂N , se we conclude
that the average of the outward normals on the boundary of a minimal surface must be
zero.
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